منابع مشابه
Matrix Representation of Quantum Gates
The field of quantum computing is growing rapidly and there is a surprisingly large literature. Research in this area includes the design of quantum reversible circuits and developing quantum algorithms for the models of quantum computing. This paper is focused on representing quantum reversible gates in matrix form. In turn these matrices can be used to develop quantum circuits with help of K-...
متن کاملRepresentation of Quantum Circuits with Clifford and π/8 Gates
In this paper, we introduce the notion of a normal form of one qubit quantum circuits over the basis {H,P, T}, where H , P and T denote the Hadamard, Phase and π/8 gates, respectively. This basis is known as the standard set and its universality has been shown by Boykin et al. [FOCS ’99]. Our normal form has several nice properties: (i) Every circuit over this basis can easily be transformed in...
متن کاملImplementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage
We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...
متن کاملQuantum Walks, Quantum Gates, and Quantum Computers
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both a singleand multi-excitation coding, and for more genera...
متن کاملUniversal Quantum Gates
In this paper we study universality for quantum gates acting on qudits. Qudits are states in a Hilbert space of dimension d where d can be any integer ≥ 2. We determine which 2-qudit gates V have the properties (i) the collection of all 1-qudit gates together with V produces all n-qudit gates up to arbitrary precision, or (ii) the collection of all 1-qudit gates together with V produces all n-q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2017
ISSN: 0975-8887
DOI: 10.5120/ijca2017913011